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3. CALCULATION OF ROCKET VERTICAL-FLIGHT PERFORMANCE 

John C. Eward*  

In calculating the altitude potential of a rocket, one must take into account the forces  
produced by both the thrust of the engine and the gravitational pull of t'ne Earth.  A sim- 
plified approach can be  developed for  estimating peak altitude performance of model 
rocket vehicles. The principles involved, however, are basic and a r e  applicable to all 
rocket-powered vehicles. The method of calculating vertical-f light performance is to 
use Newton's law to compute acceleration. Then, velocity and vertical distance, o r  alti- 
tude, are computed from acceleration. (Symbols used in these calculations a r e  defined 
in the appendix. ) 

C A LC U l A T l  ON S 

According to Newton's law of motion, a mass M exerts  a force (in weight units) of 
value M on its support. If the support is removed, this m a s s  will fall freely with an 
acceleration of 3 2 . 2  feet per  second per  second. That is, the vertical speed wil l  in- 
crease by 3 2 . 2  feet per  second for  each second of f ree  fall. Imagine that this mass  M 
is resting on a frictionless table top. A force of M (weight units) in a horizontal direc- 
tion will produce an acceleration g of 3 2 . 2  feet per second per secuiid in thz horizontal 
direction. If the  force  is increased o r  decreased, the acceleration will be  correspond- 
ingly increased o r  decreased. If the force in weight units is designated W and the ac -  
celeration is a, then this proportionality is expressed as 

or  

Wg = Ma 

Physicists do not like to keep writing g in the equation. They distinguish between force 
and weight. Hence, they define the force F as Wg. 

*AssociateDirector for Research. 



Hence, 

F = Ma 

This is the equation we wil l  use. Because this equation is independent of Earth 's  gravity, 
it is equally valid everywhere in the universe. 

motor, and (2) the force FW = -Mg due to the weight of the rocket. The force F is the 
sum of FR and FW 

A thrusting rocket has a t  least two forces  acting on it: (1) the force FR due to the 

or 

Acceleration 

From equations (2) and (3) the acceleration is given as 

For convenience, the subscript on the symbol for  the force due to the rocket motor wi l l  
now be  dropped so that 

The acceleration is thus made up of two acceleration t e rms .  The f i r s t ,  F /M,  is due to 
the thrust-to-mass ratio. This would be the acceleration if there  were no gravity. The 
second acceleration is that of gravity. This t e rm ref lects  the so-called gravity loss.  
Equation (4) is general for  vertical flight if instantaneous values of thrust  and mass  a r e  
inserted . 
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Velocity 

If the acceleration is constant, then the velocity is clearly the acceleration multi- 
plied by the time. This quantity is the area under the acceleration-time curve. If the 

t 

1 L 

Time 

acceleration is not constant, then each increment in velocity is the local average accel-  
eration multiplied by the time increment. The total velocity is the sum of the incremen- 
tal velocity changes. This is, in fact, the area under the acceleration-time curve. Note 
that the areas generated by the curve can be positive o r  negative. A positive a rea  de- 
notes increasing velocity. A negative area denotes decreasing velocity. The velocity is 
zero initially and also when the positive and negative areas a r e  equal. Tne velocity at 
any t ime is the area generated by the acceleration up to that time. Positive velocity 
means that the rocket is rising. Negative velocity means that the rocket is falling. 

, 

F I ig ht A It it ude 

In a s imilar  manner, each increment of vertical distance traveled Y by the rocket 
(flight altitude) is the local average velocity multiplied by the t ime increment. Thus, 
distance or  altitude is the area under the velocity-time curve. The maximum altitude 
occurs  when the  velocity is zero (when the positive and negative a r e a s  under the 
acceleration-time curve are equal). 

m a s s  are employed in calculating the acceleration as a function of time. For example, 
the second-stage motor thrust and the combined weight of all remaining stages would be 

Note that the equations and graphical solution are general if instantaneous thrust and 

3 



+ q > 0) 

I A  , istance is area under  

Positive area indicates 
Z v e l o c i t y - t i m e  curve. Negative area in- 

dicates decreasirtg 
altitude;-, 

I Max imum al t i tude pointbJ’ \ 

~ 

Time -- 
used just after first-stage burnout. The thrust and duration of thrust are given in model 
rocket catalogs. Remember to  use consistent units. If thrust is in pounds, multiply by 
32.2 to  get F. Use M in pounds, t ime in seconds. The value of g is 32.2 feet p e r  
second per second. If thrust  is in ounces, the mass  should be in ounces, but 32.2 is sti l l  
the multiplication factor to obtain F. Note that maximum thrust and average thrust  are 
quite different for  most model rocket motors. 

APPROXIMATE ANALYTIC SOLUTIONS 

The propellant weight for  model rockets will likely be small  compared to the launch 
weight. Hence, the m a s s  can be nearly constant. Also, an  average thrust  might be em-  
ployed instead of instantaneous thrust. Hence, acceleration is constant. The following 
equations result for a single-stage rocket. These equations can be obtained f rom the 
area plots already discussed. 

During powered flight 

4 
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The time ta is limited to the thrust duration of powered flight. The initial velocity was 
taken as zero. For coasting flight, t ime tc is measured from burnout. The height 
increase during coasting flight is y,. 

For  coasting flight 

(8) 

(9) 

a = -g 

v = -gtc + v, 

But at peak altitude V = 0, so 

va t = -  
g 

C 

a c  
4 y, = - - + v t 
2 

Inserting t, f rom equation (10) into equation (11) gives 

v: 
Y, =-  

2g 

The total height is then 

o r  

y=(;-g)!$+(;-g) 2 2 - t; 

2g 

This then reduces to 

2 t2  y = - - - - -  F~ ta F a 
2 2 g  M 2  M 
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Let T be the tota-l irr?pc!se as givcn in rocket iliuiur iabies. 
multiplied by t ime in seconds. Then 

This is force in pounds 

F”-T g (14) 
ta 

Substituting into equation (13), 

Motor 

I A . 8  a 
i A . 8  

A. 8 
B . 8  
B3 
C . 8  

= = 2M M - ta) 

Total Burning Propellant Average Velocity 
impulse, time, weight, propellant loss ,  

m, burning gt,, 
Ib-sec s e c  lb rate, ft/sec 
T, ta, 

m, 
Ib/sec 

0.17 0.17 0.00211 0.0124 5.49 

.35 .40 ,00422 .01055 12.89 

.70 .90 ,00844 ,00938 29.0 
1.15 1.40 .0139 .00992 45.1 
1.15 .35 .0139 ,0397 11.27 
1.50 2.00 .0181 ,00905 64.4 

The ta term in equation (15) resul ts  f rom the gravity loss. This subtraction from the 
flight altitude can be minimized by (a) choosing motors  with high total impulse T, (b) de- 
signing rockets with low m a s s  M, and (c) choosing motors with very short  burning t ime 
(minimizing ta). 

Tabulated values of motor characterist ics are now required. The model rocket cata- 
logs generally list such motors. These have been found to have an average specific im- 
pulse of about 8 2 . 8  seconds. That is, the motors  generate 8 2 . 8  pounds of thrust  for  each 
pound pe r  second of propellant flow rate. The jet velocity of these motors is then 
8 2 . 8  X g = 8 2 . 8  X 3 2 . 2  = 2666 feet p e r  second. Other useful motor characterist ics 
are listed in table 3-1. The quantities T and t are the total impulse and burning 
t ime included in equation (15). The quantity m is the propellant weight. This  should 
be small  compared to  the rocket weight if the assumptions of equation (15) are to hold. 
Division of propellant weight by burning t ime gives the average propellant flow rate, o r  
burning rate,  m. The te rm gta is the velocity loss  during powered flight due to  gravity, 

TABLE 3-1. - MODEL ROCKET MOTOR CHARACTERISTICS 

Distance 
loss, 
gt:/2, 

ft 

0.466 

2.58 

13.04 
31.50 
1.97 

64.4 
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2 while gta/2 is the altitude loss due to gravity during powered flight (see eqs. (6) and 
(7)). The velocity loss during powered flight, of course, leads to  an additional altitude 
loss during coasting flight. 

Sample problem: 

Each of three different rockets is to be fired with ‘cnree separate mctcrs. The haded  
weights, o r  masses,  M of the rockets a r e  0.15, 0.25, and 0. 5 pound, respectively. The 
three motors to be used a r e  the A .  8, the B3, and the C.  8. 
the expected altitude fo r  each of the rockets. [The vaiues of T and ta for  each of the 
motors a r e  given in table 3-1. ) Note that the B3 engine outperforms the C. 8 engine on 
the heavy rocket in spite of the smaller total impulse. This is due to the gravity-loss 
term.  

Use equation (15) to calculate 

0. 15-Pound rocket 

0.25-Pound rocket 

0.5-Pound rocket 

3.00 
72.2 
48.3 

SIMPLE THEORY FOR MULTISTAGE ROCKETS 

Let subscripts 1, 2 ,  3, . . . , and n refer  to conditions of the first, second, 
third,  . . . , and nth stages during thrusting flight. For example, t2 is the time in- 
crement during second stage firing, y2 is the distance, o r  altitude, increase during 
second-stage firing, V2 is the velocity increase due to the second stage, etc. The 
general equations (constant mass) for the nth stage a r e  

7 



a n = (2 - -  pi 

Hence, the total velocity of the rocket after n stages have fired is 

v = v 1 + v 2 + v 3 + .  . . vn 

Hence, 

The second te rm of equation (20) is the velocity of the rocket just prior to nth stage 
firing multiplied by the nth stage firing time, and yn is the altitude increase during 
nth stage firing. The total altitude will then be 

Y = Y 1 + Y 2 + Y 3 *  * - Y n + Y c  (21) 

o r  

In equation (22) it is assumed that there is no time delay between stage firings. Note 
from equation (14) that 
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L n 

Hence 

or 

V t  

2 
Yn = - + t,(V1 + v2 + v3 + . . . Vn-1) 

Y = y 1 + y 2 + .  . . + y n + -  v2 
2g 

or  

or 

Y = V t t l  + (; - + v  g 2  t + (:" - + v 2 + v  1)3 t + .  . . + -  v2 
2 2g 



These mathematical deri-mtioiis may be confusing. T i e  finai resuits, however, are 
almost self-evident from sketches of acceleration and velocity against time. Accelera- 
tion is constant for  each stage and for  coasting flight. The area under the acceleration- 
time curve gives the velocity. The velocity increase for each stage is then the a r e a  of 
the rectangle given by the product of acceleration and time. For example, the second- 

(T /M ) - t gt . In a simi- stage velocity increase from the sketch is a2t2 or  V2 = [ 
lar manner the t e rms  of equation (22c) may be recognized as the various shaded a r e a s  of 

21 2 

Coasting I 
I I 1st Stage , 2nd Stage I 3rd Stage I 

- - - t - - -  

z1 = 
8 
s - 

the lower part of the sketch. For example, the te rm Vlt1/2 of equation (22c) is the 
f i r s t  triangular a r ea  of the velocity-time curve. The second te rm is the area of the rec-  
tangle plus the triangle over the time interval t2,  etc. 

10 



Sample problem: 

A rocket is to be fired with a B3 motor for  its first stage and an A. 8 motor for  its 
second stage. The launch weight of the rocket is 0 . 3  pound, and the second-stage weight 
is 0.15 pound. What altitude is the rocket expected to sttzin? (b. the following calcula- 
tions the subscript number denotes the stage. ) 

From the problem: 

From table 3-1: 

From equation (17a): 

M1 = 0.3  lb 

TI  = 1.15 lb-sec 

t l  = 0.35 sec 

V1 = (E - 0.35)32.2 

v1 = 112.1 ft/sec 

M2 = 0.15 ib 

T2 = 0 . 7  lb-sec 

t2 = 0.9  sec 

V2 = (E - 0.9)32.2 

v2 = 121.4 ft /sec 

v = 112.1 + 121.4 

V = 233.5 ft/sec 

From equation (20b): 

Y2 = 121. O. + (0.9 x 112.1) 112.1 X 0.35 
2 2 

Y 1 =  

y = 155.5 ft 2 y1 = 19.6 f t  

Finally, f rom equation (22a): 
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Y = 19.6 + 155.5 + (233. 5)2 
6 4 . 4  

Y = 1021.7 f t  

These equations have neglected the change in m a s s  associated with propellant ejection. 
Hence, the actual performance would be higher than the calculated value. On the other 
hand, wind resistance, which would decrease performance, has also been neglected. The 
actual performance would also change if the thrust were not constant with time. Most 
model rocket motors give a peak in thrust soon after ignition. High initial thrust leads 
to improved performance. 

EXACT EQUATIONS FOR CONSTANT-THRUST ROCKET VEHICLES 

At any point in time, neglecting drag, 

M M 

where I 
examined), m is the average propellant burning rate in pounds per  second, and M is 
the instantaneous weight of the vehicle in pounds. Over the period of acceleration o r  
motor thrust duration, this equation yields the following expression for  velocity at burn- 
out : 

is the specific impulse ( ~ 8 2 . 8  sec for  the model rocket motors that we have 
SP 

M.  
v = 2 . 3 1  g l o g l - g t  

Mf 
SP (24) 

where Mi is the initial total mass  of the vehicle, Mf is the final m a s s  of the vehicle at 
burnout, and t is the burning time of the rocket motor. This is the same as equa- 
tion (16) of the previous chapter except f o r  the second (or gravity-loss) te rm.  The 
powered-flight altitude is then given by the equation 

- -  
Mi 
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- 
The maximum altitude (or altitude after coasting) is then 

Y = Y + Y c  

or  

v2 
Y = y + -  

2g 

I 
Aerodynamic drag has been ignored in the relations presented herein. This drag 

force,  which would be included in equation (3), generally has the form 

1 2  FD = - pV CDA 
2 

where p is the air density, and V is the instantaneous speed of the rocket. The drag 
coefficient CD is related to the geometry of the rocket and the quality of flow (laminar, 
turbulent, etc. ) over the surface of the rocket. The quantity A is a reference area to 
indicate rocket size.  The theory and prediction charts for rocket performance with 
aerodynamic drag are presented in reference 1.  
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APPENDlX - SYMBOLS 

A area 

a acceleration 

cD 

FD 

FR 

FW 

ISP 

Mf 

Mi 

F 

g 

M 

aerodynamic drag coefficient 

force 

force due to aerodynamic drag 

force due to rocket motor 

force due to weight of rocket 

acceleration due to Earth’s gravity 

specific impulse 

mass  of rocket 

f inal  m a s s  of rocket 

initial m a s s  of rocket 

M1,M2,M3, . . . , Mn m a s s  of rocket during respective firing of first, second, 
third, . . . , nth stage 

m weight of propellant 

m 

T 

W 

Y 

average burning rate of propellant 

total impulse (force multiplied by time) 

total-impulse increase associated with firing of first, second, 
third, . . . , nth stage, respectively 

time 

time duration of acceleration (for single-stage rocket) 

time duration of coasting flight (V > 0) 

incremental time increase during fir ing of first, second, 
third, . . . , nth stage 

velocity of rocket 

incremental velocity increase associated with fir ing of first, 
second, third,  . . . , nth stage 

force in weight units 

flight altitude (V 2 0) 

14 



Y incremental altitude increase 

altitude increase associated with coasting flight 

incremental altitude increase during firing of first, second, 
YC 

Y1’Y2,Y3’ * - * 7 Yn 
third,  . . . , nth stage 

P air density 

15 
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